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Figure 1: Multifluid system

1 Overview

We would like to solve the Navier-Stokes equations (1 - 4) for a multifluid
system on the domain Ω. (Note that (3), (4), and 5) are merely different
ways of writing the energy equation; (4) will be useful when evaluating the
last term in (3), while (5) is a conservative form of the energy equation.)

∂ρ

∂t
+∇ · (~uρ) = 0 (1)

∂~u

∂at
+ (~u · ∇)~u = −1

ρ
∇p+ 1

ρ
∇ · τ (2)

ρcp
DT

Dt
= ∇ · λ ∇T +D :: τ +

Dp

Dt
(3)

Dp

Dt
= −ρc2(∇ · ~u) + (γ − 1)

[

∇ · λ∇T +D :: τ
]

, (4)

∂e

∂t
+∇ · (ρ~uh− λ∇T )−D :: τ = 0 (5)

where ρ is the fluid density, ~u is the fluid velocity, p is the pressure, τ is the
stress tensor, T is the temperature, cp is the specific heat, λ is the thermal
conductivity, c is the sound speed, andD = def(~u) is the deformation tensor:

Dij =
1
2
( ∂ui
∂xj
+

∂uj
∂xi
). γ is the ratio of specific heats. In (5), e is the internal

energy, while h is the enthalpy. For a Newtonian fluid, τ = µD. Solid wall
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physical boundary conditions for the solution at ∂Ω are as follows:

~u = 0
∂T

∂n
= 0

For simplicity, we limit the discussion to the case where there are two
phases (α = {1, 2}). We will model the multifluid system by decomposing
the domain into two parts, Ω = Ω(1) + Ω(2), as depicted in Figure 1. The
region in the domain occupied by phase 1 at time t is denoted by Ω(1)(t),
while the region occupied by phase 2 is Ω(2)(t). The interface between the
two fluids is denoted by ∂Ω1/2(t). We can think of a multifluid velocity field
~u = (~u(1), ~u(2)); since the domains Ω(1) and Ω(2) are disjoint, this is unique.
The interface is assumed to move with the local fluid velocity:

∂~x

∂t
= (~u · n̂)n̂ on ∂Ω1/2,

which leads to the condition that the fluid velocity normal to the interface
is the same on both sides of the interface.
The different phases are linked by a set of jump conditions at the multi-

fluid interface (6)-(10). The notation [a] denotes the jump in a across ∂Ω1/2:
[a] = a(2) − a(1) at ∂Ω1/2.

[~u] = 0 (6)
[

t̂ · τ · n̂
]

= 0 (7)
[

p
]

=
[

τ n̂n̂

]

+ κσ (8)
[

T
]

= 0 (9)
[

λ
∂T

∂n

]

= 0, (10)

where κσ is the surface tension.

2 Incompressible Flow

For incompressible flow, the conservation of mass equation (1) reduces to the
constraint that the velocity field be divergence-free (∇ · ~u = 0). We first
outline our approach for incompressible flow before generalizing to the case
of compressible flow. For clarity, we denote the incompressible velocity field
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by the subscript d (for “divergence-free”). In the incompressible case, and in
the absence of heat transfer (T =constant), the equations (1-2) reduce to:

∂~ud

∂t
+ (~ud · ∇)~ud = −

1

ρ
∇p+ 1

ρ
∇ · τ (11)

∇ · ~ud = 0 (12)
[

Dn̂n̂

]

= 0. (13)

Note that along with the jump conditions (6-8) the incompressibility con-
straint adds another jump relation (13) at the multifluid interface [6].

2.1 Projections in a Multifluid Environment

We will use the Hodge projection extensively in our approach, so a description
of what this means in a multifluid environment is in order. The Hodge
decomposition uniquely decomposes any vector field into a divergence-free
part and the gradient of a scalar potential:

~v = ~vd + ∇φ
∇ · ~vd = 0 ∆φ = ∇ · ~v

~vd · n̂ = 0
∂φ

∂n
= ~v · n̂ on ∂Ω.

The Hodge decomposition is an orthogonal decomposition. Since (~ud · n̂) = 0
on ∂Ω,

∫

Ω

~ud ∇φ dV = −
∫

Ω

∇ · ~ud φ dV +
∫

∂Ω

(~udφ) · n̂ dA

= 0.

We use the Hodge decomposition to define the Hodge projection P0, which
when applied to a vector field ~v returns only the divergence-free portion ~vd.
Its complement, Q0, returns the gradient piece.

P0(~v) = ~vd

Q0(~v) = ∇φ.

Symbolically the projection operator and its complement are:

P0 =
(

~I − grad(∆)−1div
)

Q0 =
(

grad(∆)−1div
)

.
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We will define discrete approximations to the continuous operators for diver-
gence D, gradient G, and Laplacian L. Details of these discrete operators
will be presented later (in Section 5).
In a multifluid environment, the projection is applied to each phase simul-

taneously, with the projection operators linked through boundary conditions
at the multifluid interface.

~v = ~vd + ∇φ
∇ · ~vd = 0 ∆φ = ∇ · ~v
[

~vd · n̂
]

= 0
[∂φ

∂n

]

=
[

~v · n̂
]

on ∂Ω1/2

[

φ
]

= 0 on ∂Ω1/2.

To compute the potential φ, we solve the following equation with the accom-
panying matching conditions at ∂Ω1/2:

Lφ = ∇ · ~u on Ω(1) ∪ Ω(2)
[

φ
]

= 0 (14)
[∂φ

∂n

]

=
[

~u · n̂
]

. (15)

The jump conditions (14 - 15) are sufficient for the orthogonality of the
projection:
∫

Ω1∪Ω2

~ud grad(φ) dV = −
∫

Ω1∪Ω2

∇·(~ud)φ dV +
∫

∂Ω1/2

[

~udφ
]

· n̂ dA+ ... (16)

where the “...” represents the boundary terms along the physical boundary,
which vanish if ~ud · n̂ = 0 on the physical boundary. The boundary condi-
tions (14-15) guarantee that the second term of the right-hand-side in (16)
vanishes. The jump condition for the gradient of φ (15) will also ensure that
[

~ud · n̂
]

vanishes (
[

P(~u)
]

= 0).
The correction is then applied to each phase:

~ud = ~u−∇φ.
The variable density Hodge decomposition leads to the variable density

projection Pρ:

Pρ(~u) = ~ud (17)

Q(~u) =
1

ρ
∇φ. (18)
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In the constant density case, if ρ = 1, then P0 = Pρ. Symbolically,

Pρ(~v) =
(

I − 1
ρ
grad(Lρ)

−1div)~v

Qρ(~v) =
1

ρ

(

grad(Lρ)
−1div)~v

Lρ = div
(1

ρ
grad

)

.

The variable-density projection is applied in the same way as the constant-
coefficient projection, using the same matching conditions at ∂Ω1/2:

~v = ~vd +
1

ρ
∇φ

∇ · ~vd = 0 ∇ · 1
ρ
∇φ = ∇ · ~v

~vd · n̂ = 0
1

ρ

∂φ

∂n
= ~v · n̂ on ∂Ω

[

~vd · n̂
]

= 0
[1

ρ

∂φ

∂n

]

=
[

~v · n̂
]

[

φ
]

= 0.

2.2 Pressure Jump Formulation

In a single incompressible fluid, the pressure gradient (∇p) is the gradient
component returned by a projection, and is kinematically defined by the
divergence constraint. In the presence of a multifluid interface with surface
tension, there is a jump in the pressure balancing the surface tension and any
difference in normal stresses at the interface (8). We decompose the pressure
into two components:

p = π + χ

where π is the pressure field required to enforce the divergence constraint
(i.e. the potential returned by the projection) while χ contains the pressure
field induced by the jump in the pressure at ∂Ω1/2:

∇ · 1
ρ
∇χ = 0 (19)

[

χ
]

=
[

p
]

=
[

τ n̂n̂

]

− κσ
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3 Discretization for Incompressible Flow

3.1 Basic Volume of Fluid Spatial Discretization

The underlying discretization of space is given by rectangular control volumes
on a Cartesian grid: Υi = [(i − 1

2
u)h, (i + 1

2
u)h], i ∈ Zd, where d is the

dimensionality of the problem, h is the mesh spacing, and u is the vector
whose entries are all ones. In the case of a fixed, irregular domain Ω, the
geometry is represented by the intersection of Ω with the Cartesian grid
(figure 2). We obtain control volumes Vi = Υi∩Ω, and faces Ai± 1

2
es
that are

the intersection of ∂Vi with the coordinate planes {x : xs = (is ± 1
2
)h}. We

also define AB
i
to be the intersection of the boundary of the irregular domain

with the Cartesian control volume: AB
i
= ∂Ω∩Υi. We will assume here that

there is a one-to-one correspondence between the control volumes and faces
and the corresponding geometric entities on the underlying Cartesian grid.
The description can be generalized to allow for boundaries whose width is
less than the mesh spacing, or sharp trailing edges.
In order to construct finite difference methods, we will need only a small

number of real-valued quantities that are derived from these geometric ob-
jects.

• The areas / volumes, expressed in dimensionless terms: volume frac-
tions κi = |Vi|h−d, face apertures αi+ 1

2
es
= |A

i+ 1
2
es
|h−(d−1) and bound-

ary apertures αB
i
= |AB

i
|h−(d−1). We assume that we can compute

estimates of the dimensionless quantities that are accurate to O(h2).

• The locations of centroids, and the average outward normal to the
boundary.

xi =
1

|Vi|

∫

Vi

xdV

x
i+ 1

2
es
=

1

|A
i+ 1

2
es
|

∫

A
i+1

2 es

xdA

xB
i
=

1

|AB
i
|

∫

AB
i

xdA

~nB
i
=

1

|AB
i
|

∫

AB
i

~nBdA
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Figure 2: Cartesian grid cell containing volume-of-fluid representation of
an irregular boundary. The shaded region indicates the part of the cell not
contained in the irregular domain. The arrows indicate the centering of fluxes
in a finite volume approximation to the divergence.

where ~nB is the outward normal to ∂Ω, defined for each point on ∂Ω.
Again, we assume that we can compute estimates of these quantities
that are accurate to O(h2).

Using just these quantities, we can define conservative discretizations for
the divergence operator. Let ~F = (F (1) . . . F d) be a function of x. Then

∇ · ~F ≈ 1

|Vi|

∫

Vi

∇ · ~FdV = 1

|Vi|

∫

∂Vi

~F · ~ndA (20)

≈ 1

κih
(
∑

±=+,−

d
∑

s=1

±α
i± 1

2
es
F s(x

i± 1
2
es
) + αB

i
~nB

i
· ~F (xB

i
))

where (20) is obtained by replacing the integrals of the normal components

of the vector field ~F with the values at the centroids.

3.2 Fixed-boundary Formulation for Moving Interfaces

In a single-fluid projection method such as that in [2], different parts of the
update are evaluated at different times between tn and tn+1 = tn + ∆t. In
a fixed-geometry problem, this is straightforward. However, with a moving
interface (∂Ω1/2 = ∂Ω1/2(t)) this can present problems, since the operators
and domains are changing as a function of time. Based on an approach
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Figure 3: Time-space depiction of 1-D moving interface. Interface moves
from location xn at time t

n to location xn+1 = x0 at time t
n+1. Approach

will be to fix operator discretizations at the final location, and extrapolate
data and matching conditions to this location (i.e. extrapolate from xn and
xB to x0).

developed by McCorquodale and Colella [8], we will transform the moving-
boundary problem into a fixed-boundary problem for the duration of the
timestep from tn to tn+1.
To illustrate our approach to moving interfaces, consider a conservation

law with a source term:

∂q

∂t
+∇ · (~uq) = S on Ω1/2(t). (21)

In a multifluid environment with a moving interface, we would discretize (21)
as

κn+1qn+1 = κnqn = ∆t
∑

s

(αs~us · n̂sqs) + ∆tS, (22)

where q is the cell average of q, α is the time average of the aperture α, and
the sum over S is the sum over faces and signs from (20). Note that there
is no contribution to the flux on the moving multifluid interface, since the
boundary velocity is equal to the normal component of the fluid velocity:
d~xB
dt
= ~u.
However, if S requires an implicit update approach (for example, in a

diffusion equation), this is an inconvenient form for the time discretization,
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since S is averaged over a space-time region with a nontrivial temporal varia-
tion. Instead, we will represent the solution of (21) on a time-varying domain
as the solution to an equivalent problem on a domain which remains fixed
during the course of each time step. At the beginning of the time step from
tn to tn+1, we predict the location of the boundary at the end of the timestep
using a forward-Euler method based on the velocities at tn. We then move
the boundary and map the tn solution onto the new domain, extrapolating
where necessary to fill an extension to the tn solution in regions which have
been uncovered by the interface motion. We can then advance the solution
on the fixed tn+1 domain to compute the solution at time tn+1. This leads to
a temporal discretization of the following form:

κn+1qn+1 = κn+1qn − ∆t
h

(

∑

s

αn+1
s (q~u · n̂)n+

1
2

s − αn+1
B (qB~uB · n̂B)n+

1
2

)

+∆tS

where S is an average over the fixed space-time domain of the timestep. We
will need to evaluate jump conditions at the moving boundary. For example,
if S = ∇ ·D∇q then we may have jump conditions of the form:

[

q
]

= 0 (23)
[

D
∂q

∂x

]

= 0 on ∂Ω1/2(t). (24)

When jump conditions must be evaluated during the advance at times other
than tn+1, we compute a modified jump condition by extrapolation, as de-
picted in Figure 3. If the true jump condition at time t is

[

q
]

(xB, t) = f(xB, t) on xB ∈ ∂Ω1/2(t),

then we approximate the jump condition at the fixed interface using a Taylor
series:

[

q
]

(xB, t) =
[

q
]

(x0, t) + d(x0, t) n̂
n+1 ·

[

(∇qn)
]

(x0, t) +O(h2)

on x0 ∈ ∂Ω1/2(tn+1), (25)

where d(x0, t) is the signed distance between x0 and ∂Ω
1/2(t) and n̂n+1 is the

normal to the interface ∂Ω1/2(tn+1) at x0. The distance d(x0, t) is computed
by interpolation. Given the position of the multifluid interface at tn and tn+1,
we compute the signed distance d from each of the vertices (black circles in
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Interface at t
n+1

Interface at t
n

Figure 4: Depiction of multifluid interface moving from time tn to time tn+1.
The interface location may be parameterized by computing the signed dis-
tance from the four vertices of the cell (circles in figure) to the plane of the
interface at a given time.

Figure 4) of the cell at times tn and tn+1. Then, we interpolate these values
linearly in time at each vertex to compute the signed distances from the
vertices to ∂Ω(t). Since the distance is a smooth function in space, we may
then use bilinear interpolation of these time-interpolated values to compute
d(x0, t), the distance between x0 and the interface at time t. Solving (25)
for the jump condition at the fixed boundary location (to O(h2)),

[

q
]

(x0, t) =
[

q
]

(xB, t)− d n̂n+1 ·
[

(∇qn)
]

(x0, t)

= f(xB(x0, t), t)− d n̂n+1 ·
[

(∇qn)
]

(x0, t),

where f(xB(x0, t), t) is f evaluated at the point xB(t), the actual location
of the interface at time t. In the case where f(x, t) = f(t), this is simple,
since we don’t need to know xB precisely. In the case where f is a function
of x, xB is located by computing the closest point on ∂Ω

1/2(t) to the point
x0. Likewise, for the gradient jump relation (24), we use a Taylor series to
extrapolate values to the fixed-boundary location.
In the presence of time-dependent geometries, both operator discretiza-

tions and variables have time centerings. For example, divn+
1
2 will denote

the divergence centered at time tn+
1
2 , which will use the location of the in-

terface at time tn+
1
2 in its discretization. Since we are using the artificially
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fixed interface approach detailed above, the effect of operator time centering
only appears in the Taylor series used to compute the jump relation at the
interface (evaluated at the time-centering of the operator). Away from the
multifluid interface, the time-centering of the operator has no effect. Note
that the time centering of the operator and the data on which it is applied
need not be the same – for example, ∇n+1φn is the gradient operator defined
using the interface geometry at time tn+1 applied to the variable φ centered
at time tn.

3.3 Solving Parabolic Equations with Moving Inter-

faces

Other projection methods (for example, that in [1]) use the Crank-Nicolson
scheme to compute the viscous terms in the projection method. Unfortu-
nately, the Crank-Nicolson scheme is unstable in the presence of moving
interfaces [8], so we employ a scheme based on the second-order L0-stable
scheme in [11] to compute a second-order approximation of the viscous terms.
This scheme requires two elliptic solves for each update (rather than the sin-
gle solve required for Crank-Nicolson), but is stable in the presence of moving
interfaces. For a heat equation with a source term:

∂φ

∂t
= Lφ+ S, (26)

we can discretize the update from t to (t+∆t) as

φn+1 = φn +∆tL(φn, φn+1) + ∆tSn+ 1
2 , (27)

where Sn+ 1
2 is a second-order approximation to the source term at the half-

time (t+ 1
2
∆t). The expression L(φn, φn+1) denotes the diffusive terms in the

update computed using the semi-implicit approach outlined here.
First, compute the diffused source term S∗:

S∗ = ∆t(I + (1
2
− a)∆tLn+ 1

2 )S.

This differs from the algorithm presented in [11] because our source term is
centered at the half time (t+ ∆t

2
), while the source term in the original refer-

ence is centered at the times t and tn+1. Then, we compute the intermediate
quantity φe at the intermediate time te = tn + (1− r1)∆t:

(I − r2∆tL
te)φe = φn + (1− a)∆tLnφn + ~S∗.
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Finally, we solve for the approximation to the new-time solution φn+1 =
φ(t+∆t):

(

I − r1∆tL
n+1)

)

φn+1 = φe.

The computed value of φn+1 may be used directly, or if needed, the diffusive
term may be computed:

L(φn, φn+1) =
φn+1 − φn

∆t
− Sn+ 1

2 .

The quantities a, r1, and r2 are the values suggested in [11]:

a = 2−
√
2− ε,

discr =
√
a2 − 4a+ 2,

r1 =
2a− 1
a+ discr

,

r2 =
2a− 1
a− discr

,

where ε is a small quantity (we use 10−8).

3.4 Projection Method Time Discretization

To discretize the projection method in the presence of a moving multifluid
interface, we follow the approach of Trebotich and Colella [10]. Following [2]
and [7], we first compute an approximation to the updated velocity field, ~u∗:

ρn+1 = ρn −∆t ∇ · (ρ~u)n+ 1
2

~u∗d = ~und +∆t
(

−Ad(~ud)
n+ 1

2 − 1

ρn+
1
2

∇n+ 1
2 (πn−

1
2 + χ) +

1

ρn+
1
2

∇ · τ (~und , ~u∗d)
)

(28)

ρn+
1
2 =

1

2
(ρn + ρn+1)

[

~ud
]

= 0 (29)
[

Dnn

]

= 0 (30)
[

t̂ · τ · n̂
]

= 0, (31)

where Ad(~ud) is an approximation to (~ud · ∇)~ud centered at the half-time
(tn+

1
2 = tn + ∆t

2
) and computed using a second-order Godunov approach
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as described in [7]. The jump relations (29-31) are specified at the actual
multifluid location interface, but are applied by shifting them to the fixed-
boundary location as specified in Section (3.2). The ∇ · (τ (~und , ~u∗d)) notation
indicates that the viscous terms are computed using a semi-implicit method
such as that found in [11].
When evaluating the viscous terms in (28) using the algorithm described

in section 3.3, we will use the jump relations:

[

~u∗d
]

= 0
[

Dnn

]

= 0
[

t̂ · τ · n̂
]

= 0.

Since we need 2Dim jump relations to solve the Helmholtz equation in Dim-
dimensional space, this is correctly specified (the

[

~u∗d
]

condition supplies

Dim conditions, the
[

Dnn

]

condition supplies 1, and the
[

t̂ · τ · n̂
]

condition
supplies Dim− 1).
The intermediate velocity field ~u∗d will not, in general, satisfy the diver-

gence constraint (12). To complete the velocity update, we project:

~un+1 = Pn+1
ρn+1

(

~u∗d +
∆t

ρn+1
∇n+1πn−

1
2

)

(32)

πn+
1
2 =

1

∆t
(Ln+1

ρn+1)
−1(∇·)n+1

(

~u∗d +
∆t

ρn+1
∇n+1πn−

1
2

)

(33)

The χ pressure component is computed by solving (19). The main differ-
ence between the formulation in (32-33) and that in [10] is that in [10] the
approximation to the velocity (~u∗) is projected, solving for the increment to

the pressure πn+
1
2 − πn− 1

2 , while our approach will be to project (~u∗+ 1
ρ
∇π),

solving for the pressure field itself (πn+ 1
2 ).

4 Compressible Flow

To generalize beyond incompressible flow, we again take advantage of the
Hodge decomposition, which allows us to decompose a general velocity field
into a divergence-free part (~ud) and a potential part (~up = ∇φ). The ef-
fects of the acoustic modes (which can severely restrict the stable timestep
in a fully compressible algorithm because of a CFL condition based on the
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acoustic speeds) are confined to the potential velocity field ~up. We can then
treat the divergence-free part in the same way as outlined for incompress-
ible flow, while the potential flow part may be advanced implicitly for sta-
bility. This approach was used successfully in [3] and [10]. The method
outlined for incompressible flow in section 3 may then be generalized for
non-incompressible flows while using the same advectively-defined (rather
than acoustically-defined) CFL stability condition.

4.1 Velocity Field Decomposition

Following [3] and [10], we split the velocity field into divergence-free and
potential-flow parts:

~u = ~ud + ~up

~ud = P0(~u) ~up = Q0(~u)

The momentum equation is split into two parts:

∂~ud

∂t
= −Ad(~ud, ~up) +

1

ρ
∇ · (µ def(~ud))−

1

ρ
∇π − ~ζ +

1

ρ
~fd (34)

∂~up

∂t
= −∇

( |~up|2
2

)

+
1

ρ
∇ · (µ def(~up))−

1

ρ
∇δ + ~ζ +

1

ρ
~fp. (35)

The nonlinear advective term for ~ud, Ad(~ud, ~up) is:

Ad(~ud, ~up) = (~u · ∇)~u−∇
( |~up|2
2

)

.

The ~ζ term in (34) and (35) represents the generation of vorticity from ~up:

~ζ = −P0
(

∇ · (µ def(~up))−
1

ρ
∇δ
)

.

Also, ~fd and ~fp are the divergence-free and potential parts of the force:

~fd = P0(~f)
~fp = Q0(~f).

We likewise decompose the pressure into three parts (recall that χ contains
the part of the pressure resulting from the pressure jump at the multifluid

16



interface):

p = π + δ + χ

1

ρ
∇π = Qρ

(

−Ad(~ud, ~up) +
1

ρ
∇ · (µ def(~ud))

)

π =
(

Lρ)
(−1)∇ ·

(

−Ad(~ud, ~up) +
1

ρ
∇ · (µ def(~ud))

)

∂δ

∂t
+ ρc2∇ · ~up +

∂π

∂t
+
∂χ

∂t
+ ~u · ∇p = (γ − 1)

(

∇ · λ∇T +D :: τ
)

(36)

χ is computed using (19). The evolution equation for the temperature is
given by (3), with boundary conditions (9-10).
At the free boundary ∂Ω1/2, we have a set of jump relations linking the

two phases. In the dissipation-free case (µ = 0, λ = 0),
[

~up
]

= 0
[

~ud · n̂
]

= 0
[

p
]

= κσ.

Note that any slip at the inviscid multifluid interface is contained in ~ud, as a
result of defining ~up as the gradient of a single-valued potential. In the viscous
case (µ > 0), the strategy will be for the incompressible component to satisfy
viscous boundary conditions. Boundary conditions for ~up are derived by
subtracting the viscous boundary conditions on ~ud from the viscous boundary
conditions on the complete velocity field. Jump conditions for ~ud are:

[

Dd
nn] = 0 (37)

[

t̂ · τ d · n̂
]

= 0
[

~ud · t̂
]

= 0.

The jump condition (37) is a kinematic requirement of incompressible flow.
Jump conditions for ~up are:

[

~up
]

= 0
[

t̂ · τ p · n̂
]

= 0
[

τ p
nn

]

=
[

p
]

−
[

χ
]

. (38)

Recall that the total pressure p is determined thermodynamically: p =
p(ρ, T ) (= ρRT for ideal gases).
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Figure 5: Split velocity discretization – ~ud is cell-centered, while ~up is stag-
gered (face-centered).

Also, for the pressure components π, χ, and δ,
[

π
]

= 0
[

χ
]

=
[

τ d
nn

]

+ κσ
[

δ
]

=
[

p
]

−
[

χ
]

. (39)

4.2 Discretization of Update

The natural discretization for the split velocity field results in a cell-centered
~ud and a face-centered (staggered-grid) ~up (Fig 5). The pressures p, π, χ and

δ are cell-centered, as is the vorticity-generation quantity ~ζ. At the beginning
of the timestep to advance the solution from time tn to time tn+1 = tn +∆t,
we have the velocities, ~ζ, and pressures at time tn (~un = (~und , ~u

n
p )),

~ζn, pn, χn,

and δn). As in [2], π is lagged at the half-time tn−
1
2 : πn−

1
2 . The update will

advance all quantities by ∆t.
As in [3], we will maintain second-order accuracy in time for ~ud, while ~up

will only be first-order accurate in time. Note that this implies that ~ζ is also
first-order in time in the current approach.
The update proceeds as follows. First, compute an approximation to the

incompressible velocity ~u
n+ 1

2
d at cell faces at the half-time tn+

1
2 , using the

unsplit approach outlined in [7]. Similarly, compute face-centered approx-

imations to the density and temperature at tn+
1
2 , using the face-centered

velocity field ~un+
1
2 = ~u

n+ 1
2

d + ~unp .
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Then, we compute the update to the density field:

ρn+1 = ρn −∆t ∇ · (ρ~u)n+ 1
2 . (40)

At this point, do an energy equation update. First, compute an approxima-
tion to the temperature at tn+1:

T ∗ = T n −∆t(~u · ∇)T n+ 1
2 +

∆t

ρn+
1
2 cv

(

L(T n, T ∗, λ) +D∗ :: τ n
)

− (γ − 1)T n∆t(∇ · ~up)
[

λ
∂T ∗

∂n

]

= 0 at ∂Ω1/2(tn+1)
[

T ∗
]

= 0 at ∂Ω1/2(tn+1),

where L(T n, T ∗, λ) is the diffusive term ∇ · λ∇T computed using the algo-
rithm specified in section 3.3 and (4) has been used to eliminate the Dp

Dt
term

in (3). Then, do a conservative energy equation update:

(ρe)n+1 = (ρe)n +∆t(−∇ · (ρ~uh)n+ 1
2 + L(T n, T ∗, λ)) +D :: τ )

The new-time temperature tn+1 may then be found by inverting e(T ).
As before, compute a provisional approximation to the incompressible

velocity field:

~u∗d = ~und +∆t
(

−Ad(~ud, ~up)−
1

ρn+
1
2

∇πn− 1
2 +

1

ρn+
1
2

∇ · (τ (~u∗d, ~und) + ζn
)

with jump boundary conditions:
[

n̂ · def(~u∗d) · n̂
]

= 0
[

~u∗d
]

= 0.

Then, compute χn+1 and increment ~u∗d:

∇ · 1

ρn+1
∇χn+1 = 0

[ 1

ρn+1
∂χ

∂n

]

= 0 at ∂Ω1/2(tn+1)

[

χ
]

= κσ −
[

τ nn(~u
∗
d)
]

at ∂Ω1/2(tn+1)

~u∗d := ~u∗d −
1

2
(
1

ρn+1
∇χn+1 +

1

ρn
∇χn)
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Finally, project ~u∗d:

~u∗d := Pρn+1

(

~u∗d +
∆t

ρn+1
∇πn− 1

2 −∆tζn
)

πn+
1
2 =

1

∆t
(Lρn+1)(−1)∇ ·

(

~u∗d +
∆t

ρn+1
∇πn− 1

2 −∆tζn
)

[

πn+
1
2

]

=
[

τ nn

]

+ κσ
[ 1

ρn+1
∂π

∂n

]

=
[

~u∗ · n̂
]

The equations for the preliminary updates for ~u∗p and δ
∗ are:

~u∗p = ~unp +∆t
(

−∇
( |~up|2
2

)

− 1
ρ
∇δ∗ − ζn +

1

ρ
fp (41)

+AvC→F 1

ρn+
1
2

(

∇ · (τ (~unp ))
)

)

δ∗ = δn +∆t
(

−ρc2 ∇ · ~u∗p − ~u · ∇p− ∂π

∂t
− ∂χ

∂t

)

(42)

+∆t(γ − 1)
(

L(T n+1, λ) +D :: τ
)

+∆t η(δ∗ + πn+
1
2 + χn+1 − p(ρn+1, T n+1)).

Since there are two redundant ways that the pressure is computed in this
approach which are equivalent at the PDE level, but which can differ due to
numerical drift, the last term in (42) is designed to drive the kinematically-
determined pressure p = π + χ + δ and the thermodynamic pressure p =
p(ρ, T ) together. Similar approaches have been used in [7, 9].
Solve (41) and (42) simultaneously (this leads to a Helmholtz equation

for δ∗) with the jump relations

[

~up

]

= 0
[

δ
]

=
[

p
]

−
[

χ
]

[1

ρ

∂δ

∂n

]

=
1

∆t

[

~unp · n̂n+1
]

+
[(

−ζn −∇
( |~unp |2
2

)

+
1

ρn
AvC→F (∇ · τ n

p )
)

· n̂n+1
]

.
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Then, compute the backward Euler estimate of the viscous terms for ~up:

~u∗∗p = AvF→C(~u∗p)−∆t ∇ · (τ (~unp )) + ∆t ∇ · (τ (~u∗∗p ))
~u∗p := ~u∗p +∆tAv

C→F
(

∇ · (τ (~u∗∗p ))−∇ · (τ (~unp ))
)

.

We perform this update in two steps due to centering requirements – ~u∗∗p is
cell-centered, while ~u∗p is face-centered. Finally, use the projection operators
to complete the velocity updates:

~un+1p = Q0~u
∗
p

ζn+1 = ζn +
~un+1p − ~u∗p

∆t
~un+1d = ~u∗d +∆tζ

n+1.

5 Spatial Discretizations

5.1 Computing Interface Values

To complete operator discretizations at multifluid interfaces, we will follow
the approach used in [5] for discretizing Poisson’s equation at embedded
boundaries. In cells intersected by the multifluid interface (“irregular cells”)
or when regular operator discretizations cross the multifluid interface, we
will need to compute solution values and derivatives at the interface itself,
in order to enforce the matching conditions. We will demonstrate the case
where both a Dirichlet and a Neumann jump condition must be satisfied (as
when computing the projection). Simple Dirichlet or Neumann conditions
will use the same discretizations outlined here. Figure 6 depicts an example
of a multifluid interface, with α = 1 on the left of the interface, and α = 2
on the right. Point B is at the center of the interface in cell (i, j), and n̂

(α)
B

is the outward normal to the interface at point B for phase α (so there are
two normal vectors, one for each phase.) As in [5], values in partial cells are
considered to be located at the center of the uncut cell, instead of at the
centroid of the partial cell. Therefore, cells which contain the interface ∂Ω1/2

contain two cell-centered values for each variable – one for each phase.
Since the angle of the interface at B in Figure 6 is less than π

4
, points

1(α) and 2(α) are intersections of n̂
(α)
B with the cell-centers in the x-direction.

(If the angle of the interface were between π
4
and 3π

4
, we would look at cell
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Figure 6: Discretization at fluid interface. The point B is at the centroid of
the fluid interface ∂Ω1/2 for the cell (i, j).

centers in the y−direction, etc.) The distances d(α)1 and d
(α)
2 are the positive

distances between point B and points 1(α) and 2(α) respectively. Given these,
we can define the gradient (for example, for p) at point B as follows:

(∂p

∂n

)(α)
= (±)α

1

d
(α)
2 − d

(α)
1

(

(p
(α)
B − p

(α)
1 )

d
(α)
2

d
(α)
1

− (p(α)B − p
(α)
2 )

d
(α)
1

d
(α)
2

)

, (43)

where

(±)α =
{

+ α = 1

− α = 2.

As in [5], we compute p
(α)
1 and p

(α)
2 using quadratic interpolation of the cell-

centered values of p(α) along the line “normal” to n̂ (the dashed lines in
Figure 6). On both sides of the interface, n̂ is defined to point outward from
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B to points 1 and 2. The two phases are linked through the jump relations:

gN(xB) =
[∂p

∂n

]

=
(∂p

∂n

)(1)

B
−
(∂p

∂n

)(2)

B

gD(xB) =
[

p
]

= p
(1)
B − p

(2)
B .

This gives two equations in two unknowns:

(

η(1) η(2)

1 −1

)

(

p
(1)
B

p
(2)
B

)

=

(

rN

rD

)

where

η(α) =
1

d
(α)
2 − d

(α)
1

(d
(α)
2

d
(α)
1

− dα1

d
(α)
2

)

where d
(α)
2 > d

(α)
1 , and

rN = gN(xB) +
∑

α

(±)α
(

p
(α)
1

d
(α)
2

d
(α)
1

− p
(α)
2

d
(α)
1

d
(α)
2

) 1

d
(α)
2 − d

(α)
1

rD = gD(xB).

Since η(α) > 0 for α = {1, 2}, this is always invertible.
Implementing this algorithm requires both face-centered (MAC) and cell-

centered (CC) projections. As in [7], we will start with the MAC projection
discretization, then build the cell-centered projection based on the MAC
operators in combination with appropriate averaging operators.

5.2 MAC Operators

The MAC divergence is a cell-centered divergence of a face-centered vector
field. The face-centered vector field required for this operator consists of the
component normal to each face, including a normal velocity at the centroid
of the multifluid interface (~u · n̂B). Note that in the presence of a multifluid
interface, the value of the face-centered vector field may be double-valued at
the interface, since the values in each phase at the interface may not be the
same.
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In cells without a multifluid interface, discretization is straightforward.
We use a finite-volume discretization to make extension to the partial-cell
case more straightforward. In two dimensions,

D(~u)ij =
1

∆x∆y

(

∆y(ui+ 1
2
,j − ui− 1

2
,j) + ∆x(vi,j+ 1

2
− vi,j− 1

2
)
)

.

In the case of a cell with a fluid interface, we use the approach already
outlined in (20). The interface value ~uB is centered at point B, which is the
centroid of the interface. Then, the face-centered divergence for phase α in
cell i is:

D(~u(α))i =
1

∆x∆yκ
(α)
i

(

(aα
i+ 1

2
,j
∆y)u

(α)

i+ 1
2
,j
− (aα

i− 1
2
,j
∆y)u

(α)

i− 1
2
,j

+(aα
i,j+ 1

2
∆x)vα

i,j+ 1
2
− (aα

i,j− 1
2
∆x)vα

i,j− 1
2

−αB
i
(~uαB · n̂αB)

)

.

The MAC gradient is computed in the same way as in [5]. For faces which
are not coincident with multifluid interfaces, we use the standard centered-
difference discretization:

Gx(φ)
(α)

i+ 1
2
,j
=

1

∆x
(φαi+1,j − φαi,j) (44)

Gy(φ)
α
i,j+ 1

2
=

1

∆y
(φαi,j+1 − φαi,j).

On the interface, we compute the normal derivative at the interface using
(43), which gives (G(φ)(α) · n̂B).
To compute the transverse component of the MAC gradients (for correct-

ing transverse components of the velocity field for example) near the multi-
fluid interface, we simply use quadratic extrapolation of the cell-centered φ to
any completely covered cells in the usual stencil for computing the transverse
gradient. For example, on the x−faces, the stencil for computing GMAC

y φ is
normally

(GMAC
x φ)i,j+ 1

2
=

φi+1,j+1 + φi+1,j − φi−1,j+1, φi−1,j

4∆x
(45)

(GMAC
y φ)i+ 1

2
,j =

φi+1,j+1 + φi,j+1 − φi+1,j−1, φi,j−1

4∆y
.

In the example shown in Figure 6, when computing the x−component of
the gradient at the (i, j + 1

2
) face for the α = 2 phase, the (i − 1, j) cell is
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completely out of the Ω(2) domain. We extrapolate a value to the cell center
of the (i − 1, j) cell using the values of φ(2) which we do have, then use the
extrapolated value in the standard stencil (45). In the current approach,
we will not need transverse gradients at the multifluid interface (point B in
Figure 6).
Then, the Laplacian operator used in the MAC computation is simply

the divergence of the gradient:

L(φ)
(α)
i
= DMAC(GMAC(φ))α

i
.

The face-centered (MAC) projection operator applied to a staggered-grid
velocity field ~uface is then discretized as

PMAC(~uface) = (I −G(L−1)D)~uface (46)

5.3 Cell-Centered Projection Operators

We construct the operators for the cell-centered projection in the same way
as in [7], by combining the MAC-centered operators defined previously with
appropriate averaging from cells-to-faces (AvC→F ) or faces-to-cells (AvF→C).
To construct a cell-centered divergence operator DCC~uCC , we average the

cell-centered velocity field to faces, then apply the face-centered divergence
operator:

DCC~uCC = DMAC(AvC→F~uCC).

Since every face where we need a face-centered velocity will always have valid
data on either side of it, there is no need to extrapolate data. However, since
the face-centered velocities needed for the MAC divergence are centered at
the center of the aperture, while the cell-centered data is located at cell
centers, we will need to interpolate the face-centered data to the center of
the aperture (Figure 7). To complete the stencil for the MAC divergence in
cells with multifluid interfaces, we also need to compute a value for ~u · n̂.
To maintain the global accuracy of the operator, we require an O(h2) value,
which we interpolate using bilinear interpolation of the cell-centered vector
field ~u; these interpolated values may likely be double-valued at the interface.
To compute the cell-centered gradient GCCφCC , we compute the normal

component of the face-centered gradient, then average the face-centered gra-
dient to cell centers:

GCCφCC = AvF→CGMACφCC .
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α = 2

α = 1

Figure 7: Cell-to-face averaging for a partial face. First average cell-centered
data (open circles) to centers of faces (solid circles), then interpolate to get
aperture-centered face value (arrow).

Near the multifluid interface, both faces necessary for simple averaging of
faces to cells may not be available. In that case, extrapolate face-centered
values to the unavailable face, then average to the cell center as usual (Figure
8).
Finally, for the cell-centered approximate projection formulation, we use

the same Laplacian operators as for the MAC discretization (L and Lρ).
The cell-centered projection operator applied to a cell-centered velocity

field ~uCC is then discretized as

PCC(~uCC) = (I −GCC(L−1)DCC)~uCC (47)

6 Specific Algorithm Details and Notes

6.1 Nonlinear Advection

Following [3], we compute Ad(~ud, ~up) at cell centers. We first average ~up

to cell centers, then predict an upwinded, face-centered ~u
n+ 1

2
d , applying a

MAC projection to ensure that ~u
n+ 1

2
d is divergence-free. We then use the

face-centered (~u
n+ 1

2
d ) and (~unp ). Note that we make no attempt to compute

time-centered ~up terms, since ~up is only first-order in time anyway.
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α = 2

α = 1

Figure 8: Face-to-cell averaging near a multifluid interface. To compute av-
eraged value at cell center (open circle) requires an unavailable face-centered
value (dashed arrow). Compute value for that face by extrapolating using
the three solid arrows.

6.2 Potential Advective Term

We average transverse components of ~unp to faces so that we have all com-
ponents of ~up co-located at each face, then compute |~unp |2 at faces. Then we
use the face-centered gradient operator to compute GMAC(

|~unp |
2

2
).

6.3 Viscous Terms

For the vortical component ~ud, we compute the viscous terms [
1
ρ
∇·(µ def(~ud))]n+

1
2

using the TGA algorithm outlined in Section 3.3 in the same way as in the
INS algorithm. For the potential component, we average ~up to cell-centers
and use backward Euler to compute the viscous terms [ 1

ρ
∇ · (µ def(~up))]n+1.

We then average back to faces.
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6.4 Pressure Update

As in [3], we combine (41) and (42) and solve for δn+1, resulting in a Helmholtz
equation for δn+1:

((1−∆tη)I − ρ(c∆t)2Lρ)δ
n+1 = δn −∆tρc2DMAC~unp (48)

+∆t2ρc2DMACGMAC
( |~up|2
2

)n

−(∆t)2ρc2DMAC [
1

ρn+
1
2

∇ · (µ def(~up))]n+1

−∆t2ρc2DMAC
(

~ζn + ~fp
)

+∆t(γ − 1)
(

L(T n+1, λ) +D :: τ
)

−∆t
(∂π

∂t

)n −∆t
(∂χ

∂t

)n −∆t(~u ·GMACp)n

+∆tη(π + χ− ρRT )

Note that to compute the pressure in the last term in (48), we have δn, but

πn±
1
2 . We compute πn = 1

2
(πn−

1
2 + πn+

1
2 ), then pn = πn + δn. The time

derivative of π is
(∂π

∂t

)n

=
πn+

1
2 − πn−

1
2

∆t
.

6.5 Projections

For the vortical velocity field ~ud, we use the cell-centered approximate pro-
jection used in [7]:

~u∗d = ~und +∆t
(

−Ad(~ud, ~up) + [
1

ρ
∇ · (µ def(~ud))]n+

1
2 + ~fd

)

~un+1d = P0(~u
∗
d).

In the course of projecting ~ud, we also compute π
n+ 1

2 .
To update ~up and compute the vorticity-generation term ~ζ, we apply a

face-centered (MAC) projection to the pressure gradient and viscous terms

28



in (35):

~un+1p = ~unp −∆t grad
( |~up|2
2

)

(49)

+QMAC
0

(∆t

ρ

(

∇ · (µ def(~up))n+1 −∇δn+1
)

)

~ζn+1 = PMAC
0

(∆t

ρ
[∇ · (µ def(~up))]n+1 −

∆t

ρ
∇δn+1

)

7 AMR for Incompressible Multifluid Systems

As a special case, we will compute locally refined solutions for incompressible
multifluid systems. In this case, the velocity field will be divergence-free
(~u = ~ud, ~up = 0). Away from the multifluid interface, the algorithm reduces
to the incompressible projection method outlined in [4].
Our strategy for computing locally refined solutions will be to refine the

multifluid interface to the finest resolution in the AMR hierarchy. In this
way, the interface dynamics are resolved as finely as possible, while also sim-
plifying the algorithm by avoiding the complications of a multifluid interface
crossing a coarse-fine interface. Once this has been specified, the multifluid
and AMR aspects of the algorithm become decoupled; the multifluid inter-
face dynamics are treated as outlined in this document, while the otherwise
the algorithm used will be the one outlined in [4] for computing solutions to
the incompressible Navier-Stokes equations with local refinement.
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